PHYSICAL STABILITY OF AGROCHEMICAL FORMULATIONS

From Suspension to Emulsion

Presented by: Dr. Martin Viertelhaus,
BASF SE
13th June 2017
Dr. Martin Viertelhaus is Research Scientist Crystalline Materials and Polymorphism at BASF SE, Ludwigshafen, Germany.

His expertise is in the field of solid state development and physicochemical characterization of active ingredients: e.g. agrochemical, pharmaceutical and performance chemicals. During his professional career, he worked for pharmaceutical and chemical companies as well as for a service provider.

This webinar is being recorded and will be made available.

The audience is muted and send the questions to info@crystallizationsystems.com.

This webinar will last 45 minutes.
TECHNOBIS CRYSTALLIZATION SYSTEMS

- Privately owned company
- 50 employees
- Located in Alkmaar, The Netherlands
- Leader in 3 major markets: Pharma, Agro and Fine Chemicals

Portfolio

- 3 products for: formulation, process optimization and crystallization related research
Products

Discover
- Early stage salt, polymorph screening
- Single crystal growth

Screen
- Solubility, MSZW
- Phase diagrams
- Selecting solvents
- Polymorphs, Salt and Co-crystals screening

Optimize
- Form control
- Habit control
- Particle size
- Process optimization
- Formulation

Working volume:
- **0.06 – 0.1 ml**
 - 32 reactors
- **0.5 – 1 ml**
 - 16 reactors
- **2.5 – 5 ml**
 - 8 reactors
Physical Stability of Agrochemical Formulations
From Suspension to Emulsion

Dr. Martin Viertelhaus
Overview

- solid state properties
- agrochemicals and their formulations
- two active ingredients …
- … plus formulants
- re-crystallization
Solid State Properties

- Solid state properties depend on the crystal form.
- Knowledge about (meta)stable solid forms of active ingredients (AIs) is important for:
 - production
 - formulation
 - storage
 - application
Formulation and Solid State of Active Ingredient
Agrochemicals

■ indications
 ► fungicides (F)
 ► herbicides (H)
 ► insecticides (I)

■ product application
 ► formulated concentrate
 ► dilution in water
 (compatibility with water)
 ► application to fields
Agrochemical Formulation

- formulation development
 - high active loading
 - low viscosity (liquid)
 - easy to dissolve/disperse (solid)
- storage stability
 - 2 years at ambient temperature
 - 2 weeks @ 54°C (accelerated)
- application stability
- robustness in biological tests
Formulation Stability

- production
 - mixing
 - properties
 - viscosity

- storage
 - sedimentation, re-suspension
 - agglomeration, crystallization

- dilution and application
 - mixing
 - crystal growth

crystalline active on leaf surface
Agrochemical Formulation

- 63 different classifications of formulations
- active is
 - solid in solid mixture
 - suspended in liquid
 - dissolved in water or solvent
- solid state properties of active of interest
 - in formulation
 - after dilution
 - during application
 - on the plant

### int. code	description
EC | emulsifiable concentrate
SL | soluble concentrate
DC | dispersible concentrate
SC | suspension concentrate
SE | suspo-emulsion
OD | dispersion in oil
EW | emulsion, oil in water
ME | micro-emulsion
CS | capsule suspension
WG | water dispersible granule
WP | wettable powder

CropLife International, Technical Monograph n°2
the majority of agrochemical formulations include more than one active ingredient

up to four actives ingredients

less resistance building

broader application window

cooperative effects

stronger curative effect
Two Active Ingredients

- 2 solid actives:
 - pre-formulation

- active 1 + active 2
- mixture of AIs
- eutectic melt
- co-crystal
Active I – Active II Eutectic

- melting points of separate actives above 80°C
- mixed actives: eutectic melting at 62.6°C
Suspension Stability Experiment

- pre-formulation or final formulation
- further reduction of “melting point“
 conversion point from suspension to emulsion
- mixture of active ingredients and solvents/blank formulations
 - stirring
 - temperature rise
 - pictures

Photos taken with Crystalline PV
Active I – Active II
Formulation Development

- Al I : Al II (g/g)
- Crystalline PV: T ramp 20°C/h, bottom stirred

solvent A

![Images of solvent A at different temperatures](image)

solvent B

![Images of solvent B at different temperatures](image)

Photos taken with Crystalline PV
Final Formulation

- solids: eutectic melting at 62.6°C

- eutectic melting temperature reduced to
 - 59°C in solvent A
 - 55°C in solvent B

- formulation physically not stable
 agglomeration, sedimentation

- decision:
 no suspension concentrate
Two Active Ingredients plus Liquid Formulants

- Active 1 + Active 2
- Mixture of AIs
- Liquid plus solid (e.g. eutectic + excess solid)
- Eutectic melt
- Co-crystal

- Active 1 + Active 2 + Formulants
- Mixture of AIs in formulation (SC)
- Liquid plus solid (excess solid active)
- Solution
- Emulsion
- Co-crystal in liquid formulation (SC)
Re-Crystallization

- temperature cycling to enhance the chance to crystallize
- crystal size
- crystal morphology
- individual experiments and temperature programs

experiment: Crystalline PV, T ramp -7.5°C/h, bottom stirred

Photos taken with Crystalline PV
Physical Stability of Agro Formulations

- investigation regarding
 - solid state properties of actives
 - model formulations
 - final formulation

- can explain observation
 - of farmers/users
 - in final formulation

- can avoid running for the wrong formulation type

- dissolution
 - re-crystallization
 - phase transformation
Acknowledgement

- Christian Sowa
- Rolf Hellmann

Martin Viertelhaus
BASF SE
Ludwigshafen
QUESTIONS?

• Any follow up questions or other enquiries: info@crystallizationsystems.com

• Participants will be sent details of how to access a recording of this webinar

Webinar organized by

Technobis

crystallization systems

www.crystallizationsystems.com