LUNCH & LEARN 2023

Crystal16: Nucleation Rate from Induction Time

Jyoti Yadav Technobis Crystallization Systems, The Netherlands

During this session

- Introduction to Technobis instruments
- About Crystal16
 - What is Crystal16
 - How it works .. Solubility measurement
 - Application
- Setting up an experiment to determine solubility & MSZW
- Nucleation
 - What is nucleation
 - Types of nucleation
 - Classical nucleation theory
- Experimental section
 - Sample preparation
 - Programming an experiment on Crystal16
 - Analysis the data using software
- Case Study: Effect of solvent composition on solubility, MSZW and nucleation rate of

ascorbic acid

- Conclusions
- Q&A / Discussion / Play with the instrument

Technobis Crystallisation Systems

- Platforms for accelerating crystallisation research
- Developed a number of unique and proprietary technologies
- Global services in 3 major markets: Pharma, Agro and Fine Chemicals
- Active also in Food and Personal Care, Inks, Coatings, Oil and Academia
- Portfolio contains 3 products for: crystallisation, process optimization and formulation related research

Products

Crystal BREEDER

Discovery

- ✓ Solubility, MSZW
- ✓ Polymorphs, Salt and Co-crystals screening
- ✓ Solvent screening
- ✓ Single crystal growth

- ✓ Particle size distribution
- ✓ Process optimization
- ✓ Formulation

Products

Crystal16: what is it...

Features

A critical workflow component in your high-end research and pre-production lab environment

End-User Benefits of the Crystal16V3

Improved Experimental Results

Improved Data Processing

Ruggedness & Reliability

INCREASED LIMITS OF DETECTION AND IMPROVED TRANSMISSIVITY SENSOR LINEARITY

Better results for both low and highly concentrated samples LOWER LIMIT OF DETECTION

End-User Benefits of the New Crystal16

NEW INTUITIVE SOFTWARE

- Redesigned intuitive block-based experiment programming interface
- User friendly, easy to use, flexible

EASY INTUITIVE EXPERIMENT PROGRAMMING USING LOGIC BLOCKS

Improved Data Processing

Improved Experimental Results

Ruggedness & Reliability

End-User Benefits of the New Crystal16

Improved Experimental Results

INTEGRATED SOFTWARE FOR DATA ANALYSIS

- Integrated data collection and processing
- User defined clear and cloud points
- Online analysis of results

Ruggedness & Reliability

Improved Data Processing

The New Industry Standar

New Feature: Feedback control

- Feedback control allows for the reduction of experimental time
- End heating ramp once a sample reaches 100 % transmissivity (solubility point)

Benchmark Crystal16 V2 vs V3

Aspect	Crystal16 V2	Crystal16 V3		
Temperature range	-15C on 1 reactor blocks -10C on all 4 reactor blocks	-20 on ALL 4 reactor blocks (Air cooled) -25C on ALL 4 reactor blocks (external chiller)		
Transmissivity	(*system dependent; example on CBZ in IPA/water, min amount 1 mg/mL)	Linear over a wider range; Improved response for more optically opaque samples; Improved low level sensitivity: detect 50% less material* (*system dependent; example on CBZ in IPA/water, min amount 0.5 mg/mL)		
Maintenance and serviceability	Constructed from several parts	Unibody – quicker maintenance, less downtime Less purge gas consumption		
Data Analysis	Separate software for data acquisition and for data analysis Fixed automated clear and cloud point analysis	Integrated data acquisition and analysis in a single software User defined automated clear and cloud point analysis Feedback control		

Solubility

Why and when solubility matters?

- To determine the Solubility curve and MSZW
- Solvent selection for crystallization
- Design crystallization process
- > To determine theoretical yield
- Counter-ion selection for salt formation
- Co-former selection for co-crystallization
- Impurity impact purification/separation method
- > Impact of different temperature profiles on your crystallization process

How to determine the solubility

Gravimetric method

4 samples = 2 Hrs sample prep + 8 hrs ground work (calibration curve) 72 hrs equilibrations Most accurate

Solvent Additional method

4 samples = 6 Hrs

Polythermal method (C16)

16 Samples = 2 Hrs sample Measurement automated overnight **2 work hours total**

How it works: Transmissivity Technology

Solubility Curve and MSZW

Crystal16 v3 – Ready For Almost Any Crystallization Application

Solubility & MSZW determination experiment setup

Ascorbic acid in Water:

Details: Concentrations

Solubility of Ascorbic acid in Water

Vi	al 1	Vi	al 2		Via	al 3		Vi	al 4	
Compound	Ascorbic acid	Compound	Ascorbic acid		Compound	Ascorbic aci	d	Compound	Ascorbic acid	
Solvent	Water	Solvent	Water	\supset	Solvent	Water		Solvent	Water	
Concentration	561,0000 \$	Concentration	617,0000	٥	Concentration	674,0000	٥	Concentration	731,0000	٥
Supersaturation	0,00 \$	Supersaturation	0,00	٥	Supersaturation	0,00	٥	Supersaturation	0,00	٥
Unit	mg/ml	Unit	mg/ml		Unit	mg/ml		Unit	mg/ml	
Top stirrer		Top stirrer		\sim	Top stirrer		\sim	Top stirrer		\sim
Bottom stirrer	Standard V	Bottom stirrer	Standard	\sim	Bottom stirrer	Standard	\sim	Bottom stirrer	Standard	~
Clear	Copy to all	Clear	Copy to	all	Clear		to all	Clear	Copy to	all

Program

CRYSTALLIZATION SYSTEMS

Transition points

Solubility & MSZW

Solvent	Point type	Function	Color	R2	AdjR2	Fitted function
Water	Clear	Van't Hoff		0.9989	0.999	exp(13,9946 - 2439,6478/(T + 273)

Nucleation

- What
 Meth
 Induction
 - What is nucleation?
 - Methods to measure nucleation
 - Induction time measurement method

What is nucleation?

Nucleation is the process of creation of a solid phase from liquid phase

Nucleation Theory

The mechanism for nucleation is unknown, but two mechanisms are proposed

- Classical nucleation theory
- Non-Classical Nucleation theory

Classical Nucleation Theory (CNT)

Fig: Schematic showing the dependence of nucleation barrier ΔG on the radius *r* according to classical nucleation theory.

$$J = ASexp\left(\frac{-B}{ln^2S}\right) \qquad A = \frac{f^*C_0 z}{S} \qquad B = \frac{16\pi\gamma^3\vartheta^2}{3k_b^3T^3}$$

 f^* = attachment frequency C_0 = concentration of active nucleation site Z= Zeldovich factor Υ = ineterfacial tension ϑ = = molecular volume K_b = Boltzman constant T= Temperature S= supersaturation

Devos, C., Van Gerven, T., & Kuhn, S. (2021), Crystal growth & design, 21(4), 2541-2565.

Methods to measure nucleation kinetics

Devos, C., Van Gerven, T., & Kuhn, S. (2021), Crystal growth & design, 21(4), 2541-2565.

Theory

- N: no of nuclei
- J: nucleation rate
- S: supersaturation
- A: kinetic factor
- B: thermodynamic factor
- M : total number of measurements
- M(t): number of measurements in the timeframe t.

The probability of the formation of a nucleus in a certain timeframe can be described by Poisson distribution:

$$P_m = \frac{N^m}{m!} \exp(-N)$$

$$N(t) = JVt_j$$

The probability P(t) to form one or more nuclei is:

$$P(t) = 1 - P_o = 1 - \exp(-JVt_j)$$

 $t_j = t - t_g$

$$P(t) = 1 - exp(-JV(t - t_g))$$

$$P(t) = \frac{M(t)}{M}$$

Fig: Probability distribution vs induction time.

Theory

Supersaturation Fitted function	J [m ⁻³ s ⁻¹]	tg [s]	7 –
2.4 P(t) = 1 - exp(-1015,84 * 1e-6 * (t - 555,06))	1015.84	555.057	
2.2 P(t) = 1 - exp(-577,38 * 1e-6 * (t - 721,43))	577.38	721.433	6,5 —
2.6 P(t) = 1 - exp(-1177,13 * 1e-6 * (t - 158,11))	1177.13	158.112	6 —
2 P(t) = 1 - exp(-213,12 * 1e-6 * (t - 2234,98))	213.124	2234.98	0.5.5
2.3 P(t) = 1 - exp(-617,01 * 1e-6 * (t - 409,17))	617.005	409.169	S/D 2,5 -
			5

$$ln\left(\frac{J}{S}\right) = lnA - \frac{B}{ln^2S}$$

Nucleation rates table								
Compound	Solvent	Color	Fitted function]	A [m ⁻³ s ⁻¹]	В	R2	Adj R2	
Ascorbic acid	Water		$J(S) = 2642,314 * S * exp(-1,5141 / ln^{2}(S))$	2642.31	1.51405	0.9533	0.9065	

Number of experiments

"Under these circumstances, our data modeling showed that 80 or more induction times should be measured in the real experiments, that setting growth time, tg, as the shortest induction time is acceptable and requires no additional information about the growth rate, and that using a nonlinear fitting method to the Poisson equation is the best option for estimating the nucleation rate."

Crystal

Preparing samples

S = supersaturation ratio
 C = concentration (mg/ml)
 C* = equilibrium concentration (mg/ml)

Setting up experiment

Crystal16 V3

File 📃 Details </> Program 🖧 Run & results 📈 Analyse Optional **Experiment name** Ascorbic acid in_water Description **Experiment type** FeedbackControl Optional User name Basic cap Cap type Seconds Trigger on vial All Target reached after 3 ~ V V Vials Vial 4 Vial 1 Vial 2 Vial 3 Compound Compound Compound Compound Ascorbic acid Ascorbic acid Ascorbic acid Ascorbic acid Solvent Solvent Solvent Solvent Water Water Water Water Concentration Concentration Concentration Concentration 561.8000 \Diamond 617.3000 674.8000 730.8000 Supersaturation Supersaturation Supersaturation Supersaturation 2.00 2.20 2.40 2.60 Unit Unit Unit Unit mg/ml mg/ml mg/ml mg/ml Top stirrer Top stirrer Top stirrer Top stirrer Bottom stirrer Bottom stirrer Bottom stirrer Bottom stirrer Standard Standard Standard Standard Clear Copy to all Copy to all Clear Copy to all Clear Copy to all 📋 Clear

Experimental procedure

Experimental results

Selecting clear and cloud points

Analysis

Analysis

$$ln\left(\frac{J}{S}\right) = lnA - \frac{B}{ln^2S}$$

Compound	Solvent	А	В	R ²
Ascorbic acid	Water	2925.04	1.605	0.999

Effect of solvent composition on Solubility, MSZW & Nucleation rate of Ascorbic acid

Solubility experiment

Binary solvent system 1		Binary sys	v solvent tem 2	Binary solvent system 3		
Water	Methanol	Water	Ethanol	Water	lso- propanol	
x ₁	<i>x</i> ₂	x ₁	x ₂	x ₁	x ₂	
1	0	1	0	1	0	
0.8	0.2	0.8	0.2	0.8	0.2	
0.6	0.4	0.6	0.4	0.6	0.4	
0.4	0.6	0.4	0.6	0.4	0.6	
0.2	0.8	0.2	0.8	0.2	0.8	
0	1	0	1		1	

 $x_2 = \frac{m_2/MW_2}{m_1/MW_1 + m_2/MW_2}$

 X_1 : mole fraction of water

 X_2 : mole fraction of alcohol

Operating parameters:

Heating/cooling rate: 0.3 °C/min Temperature range: -10 °C to 80 °C Stirring speed: 600 RPM Solvent volume: 1 ml

Name	Function	Color	R2
Clear	Van't Hoff		0.9952
Cloud	Van't Hoff		0.9975

Solubility

Jouyban-Acree model

Jouyban-Acree model is commonly used model to predict the solubility in solvent mixtures

$$\ln x_{AA} = x_1 \ln(x_{AA})_1 + x_2 \ln(x_{AA})_2 + \frac{x_1 x_2}{T} \sum_{i=0}^2 J_i (x_1 - x_2)^i$$

$$x_2 = 1 - x_1$$

$$\ln(x_{AA})_1 = a_1 + \frac{b_1}{T}$$

$$\ln(x_{AA})_2 = a_2 + \frac{b_2}{T}$$

$$\ln x_{AA} = A_1 + A_2 \frac{1}{T} + A_3 x_1 + A_4 \frac{x_1}{T} + A_5 \frac{x_1^2}{T} + A_6 \frac{x_1^3}{T} + A_7 \frac{x_1^4}{T}$$

Parameters	Water-MeOH	Water-EtOH	Water- <i>i</i> -PrOH
A ₁	4.691	5.339	7.348
A ₂	-2627	-3164	-4021
A ₃	0.3418	-0.3378	-2.85
A_4	272.5	1578	2833
A ₅	433.4	-1570	-2027
A_6	-1215	1085	1229
A ₇	610.6	-444.8	-375.9
R ²	0.9996	0.9997	0.9993
MPD (%)	0.2165	0.2465	0.5033
RMSE	0.0091	0.0128	0.0264

Jouyban, A.; Nozohouri, S.; Martinez, F. J. Mol. Liq. 2018, 254, 1-7.

Jouyban-Acree model

Water-Methanol

0.07

Predicting the solubility depending upon two parameters: **temperature** and **solvent composition**

Metastable Zone Width (MSZW)

- MSZW is difference between the solubility curve and MSZ limit.
- The measurement of MSZW is essential as it reflects the **nucleation kinetics** of the system and defines the optimum supersaturation level required for the crystallization process.
- **MSZW increases** with **increase in alcohol concentration** for all three solvent systems.
- Increase in the MSZW indicates that **higher supersaturation** is required to initiate the primary nucleation.

Results: Nucleation rate

Table: Number of experiments performed in various solvent systems.

Solvent system	Supersaturation	Concentration, c,	No. of data	Solvent system	Supersaturation,	Concentration, c,	No. of data
	, S	(mg/ml)	points, N		S	(mg/ml)	points, N
\\/otor	2.0	561.00	97	Water	2.0	561.00	97
vvater	22	617 70	104		2.2	617.70	104
	23	645 36	142		2.3	645.36	142
	2.0	674 60	99		2.4	674.60	99
	2.6	731.20	93		2.6	731.20	93
0.2EtOH+0.8W	tOH+0 8W 2.0 391.19 95 0.2iPrOH+0.8W	0 2iPrOH+0 8W	2.2	329.39	81		
0.22101110.000	2.2	430.31	108	0.211101110.000	2.3	344.37	114
	2.3	449.86	119		2.4	359.34	119
	2.4	469.43	107		2.5	374.31	110
	2.6	508.54	105		2.6	389.30	101
0.4EtOH+0.6W	2.2	265.33	91	0.4iPrOH+0.6W	2.4	179.84	84
	2.4	289.51	108		2.5	187.33	90
	2.5	301.57	149		2.6	194.83	97
	2.6	313.64	82		2.7	202.32	88
	2.7	325.76	116		2.8	209.82	139
0.6EtOH0.4W	2.3	162.90	101	0.6iPrOH+0.4W	2.6	98.88	94
	2.5	176.20	105		2.8	106.49	102
	2.6	183.80	127		2.9	110.29	88
	2.7	190.29	103		3.0	114.10	88 Te e b re
	2.9	204.90	130		3.2	121.71	

bis

Probability plots

$$P(t) = 1 - \exp(-JV(t - t_g))$$

Fig: Probability distribution from experimentally collected induction time data in various water-alcohol solvent systems.

Nucleation rate

Supersaturation, S = 2.6

Table: Nucleation rate and growth time for various solvent systems.

Solvent system	Concentration, c,	No. of data	Nucleation rate, J,	Growth time, t _g
	(mg/ml)	points, N	(no. /m³sec)	(sec)
Water	731.20	93	1319.87	155.56
0.2EtOH+0.8W	508.54	105	825.81	184.79
0.4EtOH+0.6W	313.64	82	559.33	651.32
0.6EtOH+0.4W	183.80	127	472.41	1930.09
0.2i-PrOH+0.8W	389.30	101	658.41	562.80
0.4i-PrOH+0.6W	194.83	97	171.37	2751.20
0.6i-PrOH+0.4W	98.88	94	179.24	4096.49

Nucleation parameters

$$ln\left(\frac{J}{S}\right) = lnA - \frac{B}{ln^2S}$$

Table: Nucleation kinetic and thermodynamic parameters.

Solvent system	Α	B	R ²
Water	2662.48	1.589	0.981
0.2EtOH+0.8W	2008.49	1.715	0.926
0.4EtOH+0.6W	2296.70	2.182	0.993
0.6EtOH+0.4W	1981.20	2.425	0.856
0.2iPrOH+0.8W	2321.18	2.377	0.894
0.4iPrOH+0.6W	1104.98	2.398	0.901
0.6iPrOH+0.4W	1092.94	2.633	0.847

Fig: Plot of ln(J/S) as a function of (ln S)⁻² to determine kinetic parameters of ascorbic acid in: (a) water-ethanol, (b) water-isopropanol solvent systems.

Interfacial energy, Critical radius & Gibbs free energy

Interfacial energy

$$\gamma = \left(\frac{3k^3T^3B}{16\pi\vartheta^2}\right)^{1/3}$$

Critical radius

 $r_c = \frac{2\gamma\vartheta}{k_b T lnS}$

Critical Gibbs free energy

$$\Delta G_c = \frac{16}{3} \pi \frac{\gamma^3 \vartheta^2}{k_b^2 T^2 (lnS)^2}$$

Table: Effect of supersaturation on nucleation parameters of ascorbic acid in water.

Supersaturation, S	Thermodynamic parameter, B	Interfacial energy, γ, (mJ/m²)	Critical radius, r _c , (Aº)	Gibbs free energy, ∆G _c , (kJ/mol)
2.0	1.589	5.544	7.327	7.503
2.2			6.441	5.799
2.3			6.097	5.196
2.4			5.801	4.703
2.6			5.315	3.948

Table: Nucleation parameters for ascorbic acid in various solvent systems. (S=2.6)

Solvent system	Thermodynamic	Interfacial energy,	Critical radius,	Gibbs free
	parameter, B	γ, (mJ/m²)	r _c , (A ⁰)	energy, $\Delta \mathbf{G}_{\mathbf{c}}$,
				(kJ/mol)
Water	1.589	5.544	5.315	3.948
0.2EtOH+0.8W	1.715	5.687	5.452	4.261
0.4EtOH+0.6W	2.182	6.162	5.908	5.422
0.6EtOH+0.4W	2.425	6.383	7.020	7.930
0.2iPrOH+0.8W	2.377	6.340	6.079	5.906
0.4iPrOH+0.6W	2.398	6.359	6.096	5.958
0.6iPrOH+0.4W	2.633	6.560	6.289	6.542

Summarizing...

- Crystal16 is well known for measurement of solubility and MSZW.
- Crystal16V3 comes with new features for end user benefits.
- Crystal16 for all crystallization applications.
- We learned how to determine the *Nucleation rate* with Crystal16V3.
- Nucleation rate of Ascorbic acid in various solvent systems:
 - Ascorbic acid has high nucleation rate in water.
 - The **thermodynamic parameter** *B* increases and **kinetic parameter** *A* decreases with an increase in alcohol composition.
 - The **critical radius** and **Gibbs free energy** were determined from the thermodynamic parameter *B*, which increases with increase in alcohol composition.

Thank you!!

Pyrietstraat 2

1812 SC Alkmaar

crystallizationsystems.com